
From data towards knowledge: Revealing signaling pathways through

unifying knowledge mining and data mining of systematic perturbation

data

Songjian Lu, Bo Jin, Ashley Cowart, and Xinghua Lu

1 Supplement

1.1 The maximum highly density bipartite subgraph problem is NP-hard

Maximum highly density bipartite subgraph problem: Given a bipartite graph G = (V1, V2, E) and
a real number r, decide if there exists a subgraph G′ = (V ′

1 , V
′
2 , E

′) such that any u ∈ V ′
1 , degree(u) ≥ |V ′

2 |r,
any v ∈ V ′

2 , degree(v) ≥ |V ′
1 |r, and |V ′

1 ||V ′
2 | is maximized. (note: degree(u) is the degree of vertex u, i.e.

how many vertices that are connected to u.)

Theorem 1.1 The maximum highly density bipartite subgraph problem is NP-hard.
Proof. We will prove that the maximum highly density bipartite subgraph problem is NP-hard
by reducing the k-clique problem, which is NP-hard, to it.

Given a graph G1 = (V, E1)), where n = |V |, and an positive integer k < |V |, we construct a bipartite
graph G2 = (V1, V2, E2) by the following way.

• For any ui ∈ V , add ui1, ui2, . . . , ui(n+k) to V1 and vi1, vi2, . . . , vi(n+k) to V2. For convenience, we
call ui1 and vi1 the outer vertices and ui2, . . . , ui(n+k), vi2, . . . , vi(n+k) the inner vertices.

• Connect ui1 to vi1, vi2, . . . , vi(n).

• For 1 < t ≤ n, connect uit to vi1, . . . , vi(t−1), vi(t+1), . . . , vi(n+k).

• For t > n, connect uit to vi2, . . . , vi(n+k).

• If (ui, uj) ∈ E1, then connect ui1 to vj1 and vi1 to uj1.

It is easy to know that the graph G2 has n(n + k) vertices in each side. For any i and t > 1, the
degree of uit (the inner vertex) in V1 is n+k−1 and the degree of vit (the inner vertex) in V2 is n+k−1.
For any i the degrees of ui1 (the outer vertex) in V1 and vi1 (the outer vertex) in V2 are the sum of n
(connect to inner vertices) and the degree of u in V (connect to outer vertices).

Now we prove that the graph G1 has a clique of size k if and only if the graph G2 has a highly density
component G′ = (V ′

1 , V
′
2 , E

′) such that any u ∈ V ′
1 , degree(u) ≥ |V ′

2 |n+k−1
k(n+k) , any v ∈ V ′

2 , degree(v) ≥
|V ′

1 |n+k−1
k(n+k) , i.e. r = n+k−1

k(n+k) , and |V ′
1 ||V ′

2 | = (k(n + k))2, which is maximized.
The proof of one direction is easy. Given graph G1, if G1 has a clique of size k, then the subgraph,

which is made from the clique of size k, of G2 is obvious a highly density component G′ = (V ′
1 , V

′
2 , E

′)
such that any u ∈ V ′

1 , degree(u) ≥ |V ′
2 |n+k−1

k(n+k) = k(n + k)n+k−1
k(n+k) = n + k − 1, any v ∈ V ′

2 , degree(v) ≥
|V ′

1 |n+k−1
k(n+k) = k(n + k)n+k−1

k(n+k) = n + k − 1, i.e. r = n+k−1
k(n+k) , and |V ′

1 ||V ′
2 | = (k(n + k))2.

Next we prove that |V ′
1 ||V ′

2 | = (k(n + k))2 is maximized. If G2 has a subgraph G′′ = (V ′′
1 , V ′′

2 , E′′)
such that any u ∈ V ′′

1 , degree(u) ≥ |V ′′
2 |n+k−1

k(n+k) , any v ∈ V ′′
2 , degree(v) ≥ |V ′

1 |n+k−1
k(n+k)

′
, i.e. r = n+k−1

k(n+k) , and
|V ′′

1 ||V ′′
2 | > (k(n + k))2, then |V ′′

1 | > (k(n + k)) or |V ′′
2 | > (k(n + k)).

1

Without loss of generality, let |V ′′
1 | > (k(n + k)), then for any v ∈ V ′′

2 , degree(v) > n + k − 1, i.e.
degree(v) ≥ n + k. Hence, any v ∈ V ′′

2 , v can only be outer vertex. Case 1: V ′′
1 does not have any inner

vertices. Then for any v ∈ V ′′
2 , degree(v) is at most n− 1. This will cause contradiction. Case 2: V ′′

1 has
inner vertices. As V ′′

2 does not have any inner vertices, any inner vertex u ∈ V ′′
1 , degree(u) is at most 1.

Then |V ′′
2 |n+k−1

k(n+k) ≤ 1. This will lead to |V ′′
2 | ≤ k(n+k)

n+k−1 . Thus |V ′′
1 | ≥ n+k−1

k(n+k)(k(n + k))2 > n(n + k). This
is also a contradiction. Therefore, |V ′′

1 ||V ′′
2 | ≤ (k(n + k))2.

Now we prove the other direction. Suppose G2 has has a highly density component G′ = (V ′
1 , V

′
2 , E

′)
such that any u ∈ V ′

1 , degree(u) ≥ |V ′
2 |n+k−1

k(n+k) , any v ∈ V ′
2 , degree(v) ≥ |V ′

1 |n+k−1
k(n+k) , i.e. r = n+k−1

k(n+k) , and
|V ′

1 ||V ′
2 | = (k(n + k))2, which is maximized, we show that the original graph G1 has a clique of size k.

First, we claim that |V ′
1 | = |V ′

2 | = k(n + k).
If |V ′

1 | 6= |V ′
2 |, without loss of generality, let |V ′

1 | > |V ′
2 |. Then |V ′

1 | > k(n + k) and for any v ∈ V ′
2 ,

degree(v) > n + k − 1, i.e. degree(v) ≥ n + k. Hence, any v ∈ V ′
2 , v can only be outer vertex. Case

1: V ′
1 does not have any inner vertices. Then for any v ∈ V ′

2 , degree(v) is at most n − 1. This will
cause contradiction. Case 2: V ′

1 has inner vertices. As V ′
2 does not have any inner vertices, any inner

vertex u ∈ V ′
1 , degree(u) is at most 1. Then |V ′

2 |n+k−1
k(n+k) ≤ 1. This will lead to |V ′

2 | ≤ k(n+k)
n+k−1 . Thus

|V ′
1 | ≥ n+k−1

k(n+k)(k(n + k))2 > n(n + k). This is also a contradiction. Therefore, |V ′
1 | = |V ′

2 | = k(n + k).
Second, we claim that for any ui ∈ V , if G′ includes any vertex uit that is made from ui, then G′

includes all vertices , ui1, ui2, . . . , ui(n+k) and vi1 to vi1, vi2, . . . , vi(n+k), that are made from ui.
By claim First, we know that any vertex u in V ′

1 or V ′
2 , degree(u) ≥ n + k − 1. If G′ has vertex uit,

that is made from ui in V , in V ′
1 and does not has vit′ , that is made from ui in V , in V ′

2 , then it is obvious
that any inner vertices, that are made form ui in V , cannot be in G′. Therefore uit is an outer vertex
and must be connected to n + k− 1 outer vertices in V ′

2 . This is impossible. Similarly, we can prove that
it is impossible that G′ has vertex vit, that is made from ui in V , in V ′

2 and does not has uit′ , that is
made from ui in V , in V ′

1 . The second claim is proved.
From precious two claims, we know that G′ can only be made from k vertices in V . Then to make

the degree of any outer vertex in G′ to be at least n + k − 1, any outer vertex of G′ in V ′
1 must connect

to all k outer vertices in V ′
2 and any outer vertex of G′ in V ′

2 must connect to all k outer vertices in V ′
1 .

Hence, those k vertices in V must make a clique, i.e. the graph G1 has a clique of size k.
Therefore we proved that the maximum highly density bipartite subgraph problem is NP-hard.

1.2 The greedy algorithm for the maximum highly density bipartite subgraph prob-
lem

Before we introduce the greedy algorithm, we have to introduce how to calculate the score of a subgraph
G′ = (V ′

1 , V
′
2 , E

′). We let the score of the subgraph be |V ′
1 ||V ′

2 | − p(|V ′
1 ||V ′

2 | − |E′|), where p is the penalty
for the missing edges, i.e. to calculate the score, we subtract a penalty p for each missing edge from
|V ′

1 ||V ′
2 |, which is the total number of edges for the complete bipartite graph. In the project, we let

p = 1
1−r and r = 0.75, where r is the connectivity ratio. We obtained many good expression modules by

these settings of p and r.
The basic idea of our greedy algorithm is that first, choose 3 vertices from V1 to the current V ′

1 (We
will enumerate all subsets of size 3 in V1). Then repeatedly add the current best vertex u of V1 into the
current V ′

1 . The best u means the score of the induces subgraph G′ = (V ′
1 ∪{u}, V ′

2 , E
′) is the best, where

V ′
2 = {v|v ∈ V2 and v connects to at least r(|V ′

1 | + 1) vertices in V ′
1 ∪ {u}}. We stop adding new vertex

if no vertex of V1 can make the current subgraph with better score. The algorithm detail is followed.

1.3 The exact algorithm for the t-cover hitting set problem

The weighted t-cover hitting set problem is formulated as follows:

2

Algorithm-1 HDSubgraph(G, r)
Input: A bipartite graph G = (V1, V2, E) and a real number r.
Output: A highly density subgraph

1. Gsub = ∅; Scorebest = −1;
2. for each subset S1 of size 3 in V1 do
3. Vremain = V1 − S1; V ′′

1 = S1; Status = 1;
4. while Status = 1 do
5. Scoretemp = −1; G′sub = ∅; Status = 0;
6. for each u ∈ Vremain do
7. V ′

1 = V ′′
1 ∪ {u}; V ′

2 = {v|v ∈ V2 and v connects to at least r|V ′
1 | vertices in V ′

1};
8. Calculate the score of induced subgraph G′ = (V ′

1 , V ′
2 , E′) and save the score to SC;

9. if SC > Scoretemp then
10. Scoretemp = SC; G′sub = G′;
11. if Scorebest < Scoretemp then
12. Gsub = G′sub; Scorebest = Scoretemp; Status = 1;
13. Assign V ′

1 of Gsub to V ′′
1 ; Vremain = V1 − V ′′

1 ;
14. return Gsub;

Figure 1: Greedy algorithm to find the highly density bipartite subgraph

Given a universe set X of m elements, a weight function w(x) : X → R+, a family T =
{S1, . . . , Sn} of subsets of X, and an integer t, find a subset H ⊆ X of minimum weight such
that every subset in T has at least t elements in H, where the weight of H is defined as∑

x∈H w(x). We denote an instance of the problem by (X, T , w, t) and call H the minimum
t-cover hitting set.

Suppose H is a subset of X, we define hitj(H) = {S|S ∈ T and |S ∩H| ≥ j}, hitt(H) = (hit1(H),
hit2(H), . . . , hitt(H)), and weight(H) =

∑
u∈H w(u). The algorithm is presented in Figure 2.

Before proving the correctness and time complexity of the algorithm, we give the basic idea of the
algorithm. Each subset S of X has at most t + 1 coverage statuses for any partial solution H ′, i.e.
S may have 0, 1, . . ., t − 1, or at least t element(s) in H ′. Our algorithm use dynamic programming
technique, which we remember different combinations of coverage statuses of all subsets in the problem,
i.e. if hitt(H1) = hitt(H2), we only keep one copy of the partial solution. As the problem has n subsets
of X, the total number of different combinations of the coverage statuses is at most (t + 1)n.

We use another trick to save the time, where we sort all n subsets of X by their sizes from minimum
to maximum, such as S′1, S′2, . . ., S′n. In searching the solution, we first make sure that S′1 has at least t
elements in the partial solutions; them make sure that S′2 has at least t elements in the partial solutions,
and so on. If there are many subsets whose sizes are bounded by d, then in the step of making S′k
have at least t elements in the partial solutions, there are at most 2dk (suppose 2dk < (t + 1)n) different
combinations of coverage statuses (as first k subsets are related to at most dk elements in X). After that,
since the coverage statuses of S′1, . . ., S′k are fixed to one value, the total number of different combinations
of the coverage statuses is at most (t + 1)n−k < (t + 1)n, where (t + 1)n−k and 2dk can be much better
than (t + 1)n.

Following two lemmas are needed in the proof the main theorem.

Lemma 1.2 Let X be a set of n elements and X = {(St, St−1, . . . , S1)|S1 ⊆ S2 ⊆ . . . ⊆ St ⊆ X}. Then
|X | ≤ (t + 1)n.

Proof. (of Lemma 1.2) We prove this lemma by mathematical induction on t. When t = 1, X =
{(S1)|S1 ⊆ X}. The lemma is obviously true.

3

Algorithm-2 Hitting-1(X, T , w, t)
Input: An instance of the weighted t-cover hitting set problem (t ≥ 1)
Output: A minimum weight t-cover hitting set

1.1 Sort T into {S1, S2, . . . , Sn} such that |Si| ≤ |Sj | for any i < j;
1.2 Compute Xi = ∪i

j=1Sj , ki = |Xi| for all 1 ≤ i ≤ n;
1.3 Sort X into {u1, u2, . . . , um} such that for any 1 < i ≤ n,

if ui1 ∈ Xi−1, ui2 ∈ Xi −Xi−1, then i1 < i2;
1.4 Hm = X;
1.5 Qold = {(hitt(∅), ∅)}; Qnew = {(hitt(∅), ∅)};
2 for i = 1 to m do
3 for each P = (hitt(H), H) ∈ Qold do
4.1 P ′ = (hitt(H ∪ {ui}), H ∪ {ui});
4.2 if hitt(H ∪ {ui}) = T then
4.3 if weight(Hm) > weight(H ∪ {ui}) then
4.4 Hm = H ∪ {ui};
4.5 else
4.6 if there is no (hitt(H ′), H ′) in Qnew such that hitt(H ′) = hitt(H ∪ {ui}) then
4.7 Qnew = Qnew ∪ {P ′}; /* ui hits some additional subsets */
4.8 else /* ui does not hit additional subsets but may reduce the total weight */
4.9 find (hitt(H ′), H ′) in Qnew such that hitt(H ′) = hitt(H ∪ {ui});
4.10 if weight(H ′) > weight(H ∪ {ui}) then
4.11 replace (hitt(H ′), H ′) with (hitt(H ′), H ∪ {ui});
5.1 if i = kj for some 1 ≤ j ≤ n then
5.2 find j′ which is the maximum of all j such that i = kj ;
5.3 remove any P = (hitt(H), H) from Qnew if S1, . . . , Sj′ /∈ hitt(H);
5.4 Qold = Qnew;
6 return Hm;

Figure 2: Algorithm for solving the weighted t-cover hitting set problem.

Suppose when t = i, the lemma is true, i.e. |{(Si, Si−1, . . . , S1)|S1 ⊆ S2 ⊆ . . . ⊆ Si ⊆ X}| ≤ (i + 1)n.
Then when t = i + 1, we have

|X | = |{(Si+1, Si, . . . , S1)|S1 ⊆ S2 ⊆ . . . Si ⊆ Si+1 ⊆ X}|
=

∑

Si+1⊆X

|{(Si, Si−1, . . . , S1)|S1 ⊆ S2 ⊆ . . . ⊆ Si ⊆ Si+1}|

=
n∑

|Si+1|=0

(
n

|Si+1|
)
|{(Si, . . . , S1)|S1 ⊆ S2 ⊆ . . . Si ⊆ Si+1}|

=
n∑

|Si+1|=0

(
n

|Si+1|
)

(i + 1)|Si+1| /* by induction assumption */

= ((i + 1) + 1)n.

Hence, when t = i + 1, the lemma is still true. Thus we proved the lemma.

Lemma 1.3 Let H1, H2, H ′ be three subsets of X such that H1 ∩ H ′ = ∅ and H2 ∩ H ′ = ∅. If
hitt(H1) = hitt(H2), then hitt(H1 ∪H ′) = hitt(H2 ∪H ′).

Proof. (of Lemma 1.3) As hitt(H1) = hitt(H2), hiti(H1) = hiti(H2) for all 1 ≤ i ≤ t. Hence for any

4

1 ≤ i ≤ t,

hiti(H1 ∪H ′)
= {S|S ∈ T and |S ∩ (H1 ∪H ′)| ≥ i}
= {S|S ∈ T and |S ∩H1|+ |S ∩H ′| ≥ i} /* because H1 ∩H ′ = ∅ */

=
|H′|⋃

j=0

(
{S|S ∈ T and |S ∩H1| ≥ i− j}

⋂
{S|S ∈ T and |S ∩H ′| = j}

)

=
|H′|⋃

j=0

(
hiti−j(H1)

⋂
{S|S ∈ T and |S ∩H ′| = j}

)

=
|H′|⋃

j=0

(
hiti−j(H2)

⋂
{S|S ∈ T and |S ∩H ′| = j}

)

=
|H′|⋃

j=0

(
{S|S ∈ T and |S ∩H2| ≥ i− j}

⋂
{S|S ∈ T and |S ∩H ′| = j}

)

= {S|S ∈ T and |S ∩H2|+ |S ∩H ′| ≥ i}
= {S|S ∈ T and |S ∩ (H2 ∪H ′)| ≥ i} /* because H2 ∩H ′ = ∅ */
= hiti(H2 ∪H ′).

Therefore, hitt(H1 ∪H ′) = hitt(H2 ∪H ′) and the lemma is proved.

Theorem 1.4 The weighted t-cover hitting set problem can be solved in O((t+1)nmnt) time and
in O((t + 1)nnt) space, where m is the size of the ground set and n is the number of subsets for the given
instance. If furthermore the problem has at least n

1+d/ log2(t+1) subsets whose sizes are upper bounded by d,

then the problem can be solved in O(((t+1)d/(d+log2(t+1)))nmnt) time and in O(((t+1)d/(d+log2(t+1)))nnt)
space.

Proof. We first prove the correctness of the algorithm.
Given an instance (X, T , w, t) of the weighted t-cover hitting set problem, let X = {u1, u2, . . . , um},

where X is sorted as shown in Algorithm-1 such that the order of elements in X is as S1, S2−X1, . . . , Sn−
Xn−1, where Xj = ∪j

i=1Si. Let H` = {ui1 , ui2 , . . . , ui`}, whose elements are in the same order as in the
sorted X (i.e. if j1 < j2 with respect to the index of H`, then ij1 < ij2 with respect to the index of X),
be the minimum t-cover hitting set. Let H`

j = {ui1 , ui2 , . . . , uij} for all 1 ≤ j ≤ `.
To prove correctness, we claim that when the for loop in step 2 of Algorithm-1 is at loop i = ij

for all 1 ≤ j ≤ ` (note that uij is the jth element in H` and ijth element in X), immediately before step
5.4 is executed, there exists a P = (hitt(H),H) in Qnew such that hitt(H) = hitt(H`

j) and weight(H) =
weight(H`

j). We prove this claim by mathematical induction on j.
Induction basis. In the case of j = 1 (i.e. i = i1), first we prove that the program will generate

the element we need. Since (hitt(∅), ∅) is in Qold, (hitt({ui1}), {ui1}) = (hitt(H`
1),H

`
1) will be obtained

in step 4.1.
Then we prove that the element we need will be added into Qnew. If no (hitt(H),H) in Qnew

such that hitt(H) = hitt(H`
1), then (hitt(H`

1),H
`
1) is added into Qnew in step 4.7. If there exists a

(hitt(H ′),H ′) in Qnew such that hitt(H ′) = hitt(H`
1), it is obvious that weight(H ′) ≥ weight(H`

1).
Otherwise H ′ ∪ {ui2 , ui3 , . . . , ui`} would be a t-cover hitting set with weight that is less than the weight
of {ui1 , ui2 , . . . , ui`} = H`, which causes contradiction that H` is the minimum t-cover hitting set (note:

5

here we use the lemma 1.3 and the fact that H ′ ∩ {ui2 , ui3 , . . . , ui`} = ∅ and H`
1 ∩ {ui2 , ui3 , . . . , ui`} = ∅).

If weight(H ′) > weight(H`
1), then H ′ is replaced by H`

1 in step 4.11.
Finally we prove that the element we need will not be removed in step 5.3. If i = i1 = kj for some

1 ≤ j ≤ n, let j′ be the maximum among all those j such that i = kj , then t can only be 1. Because if
t > 1, note that Xj′ = ∪j′

j=1Sj and Xj′ ∩ {ui2 , ui3 , . . . , ui`} = ∅, all Sj for j ≤ j′ is only covered by one
element in H`, then H` cannot be the minimum t-cover hitting set of the problem. If t = 1, it is obvious
that Sj , for all 1 ≤ j ≤ j′, must have one element in H`

1, i.e. {S1, . . . , Sj′} ⊂ hitt(H`
1). Hence for any

P = (hitt(H), H) ∈ Qnew such that hitt(H) = hitt(H`
1), P will not be removed in step 5.3.

From above three steps, we proved that there must be a (hitt(H),H) in Qnew such that hitt(H) =
hitt(H`

1) and weight(H) = weight(H`
1). Therefore, in the case of j = 1, the claim is true.

Induction step. Suppose that when j < q < ` the claim is true, i.e. there exists a P = (hitt(H),H)
in Qnew such that hitt(H) = hitt(H`

j) and weight(H) = weight(H`
j). Now we prove that when j = q, the

claim is also true. By induction hypotheses, when j = q−1, there exists a P = (hitt(H),H) in Qnew such
that hitt(H) = hitt(H`

q−1) and weight(H) = weight(H`
q−1). In step 5.4 of the last loop, Qnew is assigned

to Qold. Hence, when j = q, there exists a P = (hitt(H),H) in Qold such that hitt(H) = hit(H`
q−1) and

weight(H) = weight(H`
q−1). Similar to the proof of case j = 1, we still use three steps to prove the claim

in the case of j = q.
First we prove the the program will generate the element we need. As uiq is not in H (note that any

element in X is visited only once and uiq is not used before), where hitt(H) = hit(H`
q−1), by Lemma 1.3,

hitt(H ∪ {uiq}) = hitt(H`
q−1 ∪ {uiq}) = hit(H`

q). Hence a P = (hitt(H ∪ {uiq}),H ∪ {uiq}), where
hitt(H ∪ {uiq}) = hit(H`

q) and weight(H ∪ {uiq}) = weight(H`
q), will be generated in step 4.1.

Then we prove that the new element we need will be added into Qnew. If no (hitt(H ′),H ′) in Qnew

such that hitt(H ′) = hit(H ∪ {uiq}), then (hitt(H ∪ {uiq}), {H ∪ {uiq}}) is added into Qnew in step
4.7. If there exists a (hitt(H ′),H ′) in Qnew such that hitt(H ′) = hitt(H ∪ {uiq}), it is obvious that
weight(H ′) ≥ weight(H ∪ {uiq}). Otherwise H ′ ∪ {uiq+1 , . . . , ui`} would be a t-cover hitting set with
weight that is less than the weight of {ui1 , ui2 , . . . , ui`} = H`, which causes contradiction that H` is the
minimum t-cover hitting set. If weight(H ′) > weight(H ∪ {uiq}), then H ′ is replaced by H ∪ {uiq} in
step 4.11.

Finally we prove that the element we need will not be removed in step 5.3. If i = iq = kj for some j,
let j′ be the maximum among all j such that i = kj for 1 ≤ j ≤ n, then all S1, . . . , Sj′ must be in hitt(H`

q),
otherwise H` would not be a t-cover hitting set for the given instance (note that H`−H`

iq
does not have

any element in Sj for 1 ≤ j ≤ j′). Hence, for any P = (hitt(H),H) such that hitt(H) = hitt(H`
q), P will

not be removed from Qnew in step 5.3.
From above three steps, we proved that there must be a (hit(H),H) in Qnew such that hitt(H) =

hitt(H`
q) and weight(H) = weight(H`

q). Therefore, in the case of j = q, the claim is also true.
Therefore, when j = `, we will find a (hit(H), H) in Qnew such that hitt(H) = hitt(H`

`) = hitt(H`)
and weight(H) = weight(H`), i.e. we will find the minimum t-cover hitting set.

Having proved the correctness of the algorithm, let us now consider the time complexity and space
complexity of the algorithm. Step 2 loops |X| = m times. Step 3 loops |Qold| times. By Lemma 1.2,
|Qold| < (t + 1)n (note that hitt(H) = (hit1(H), hit2(H), . . . , hitt(H)) and hitt(H) ⊆ . . . ⊆ hit2(H) ⊆
hit1(H) ⊆ T). Steps 4.1 to 4.4 take O(nt) time. Steps 4.6 to 4.11 can be finished in O(log2(t + 1)n) =
O(n log2(t + 1)) time if we use AVL tree to implement Qnew and Qold. Hence the total time complexity
is O((t + 1)nmnt).

In the case that T has at least n
1+d/ log2(t+1) subsets whose sizes are bounded from above by d, then

when i = dn
1+d/ log2(t+1) , both Qold and Qnew have at most 2

dn
1+d/ log2(t+1) = ((t + 1)

1
1+log2(t+1)/d)n elements.

Furthermore, when i = dn
1+d/ log2(t+1) , any P = (hitt(H),H) in Qold or in Qnew, hiti(H), where 1 ≤ i ≤ t,

has S1, S2, . . . , S n
1+d/ log2(t+1)

. Hence, when i > dn
1+d/ log2(t+1) , all elements in Qold or in Qnew have at

6

most (t + 1)n− n
1+d/ log2(t+1) combinations of hitt(H), i.e. the size of Qold or Qnew is always bounded

from above by (t + 1)n− n
1+d/ log2(t+1) = ((t + 1)

1
1+log2(t+1)/d)n. Therefore, the total time complexity is

O(((t + 1)
1

1+log2(t+1)/d)nmnt).
The space complexity is O(|Qold|·(lengthes of elements in Qold)) = O(|Qnew|)·(lengthes of elements in Qnew)).

The lengthes of elements in both Qold and Qnew are bounded from above by O(nt). Therefore, in the
general case, the space complexity is O((t+1)nnt) and in the case sizes of many subsets in T are bounded
from above by d, the space complexity is O(((t + 1)d/(d+log2(t+1)))nnt).

7

