From data towards knowledge: Revealing signaling pathways through
unifying knowledge mining and data mining of systematic perturbation
data

Songjian Lu, Bo Jin, Ashley Cowart, and Xinghua Lu

1 Supplement

1.1 The maximum highly density bipartite subgraph problem is NP-hard

MAXIMUM HIGHLY DENSITY BIPARTITE SUBGRAPH problem: Given a bipartite graph G = (V4, Va, E') and
areal number r, decide if there exists a subgraph G’ = (V{, V3, E’) such that any u € V}, degree(u) > |VJ|r,
any v € Vy, degree(v) > |V{|r, and |V]||Vj| is maximized. (note: degree(u) is the degree of vertex u, i.e.
how many vertices that are connected to u.)

Theorem 1.1 The MAXIMUM HIGHLY DENSITY BIPARTITE SUBGRAPH problem is NP-hard.
Proor. We will prove that the MAXIMUM HIGHLY DENSITY BIPARTITE SUBGRAPH problem is NP-hard
by reducing the k-CLIQUE problem, which is NP-hard, to it.

Given a graph G1 = (V, E1)), where n = |V, and an positive integer k < |V|, we construct a bipartite
graph G = (V1, Vo, E») by the following way.

e For any u; € V, add w1, w42, .. <3 Wi(ngk) tO Vi and v;1,vi0,. .. s Vi(ntk) O V5. For convenience, we
call u;1 and v;; the outer vertices and w;a, . .., Ui(nqk)s Vi2s - - -5 Vi(ntk) the inner vertices.

e Connect u;; to v;1,vi9, ..., Vi(n)-

e For 1 <t <n, connect ujt t0 Vi1, ..., Vi(t_1), Vi(t+1)s - - - » Vi(ntk)-

e For t > n, connect u; to vsa, ..., Vi(n+k)-

e If (uj,u;) € Ey, then connect u;; to vj; and v to uji.

It is easy to know that the graph Gy has n(n + k) vertices in each side. For any i and ¢ > 1, the
degree of u;; (the inner vertex) in V; is n+k — 1 and the degree of vy (the inner vertex) in Vo is n+k — 1.
For any i the degrees of u;; (the outer vertex) in Vj and v;; (the outer vertex) in V5 are the sum of n
(connect to inner vertices) and the degree of w in V' (connect to outer vertices).

Now we prove that the graph GG has a clique of size k if and only if the graph G has a highly density
component G' = (V{,VJ, E’) such that any u € V/, degree(u) > H/Q\Z(‘;ﬁkl any v € V3, degree(v) >
\V1|Z(+nﬁk1 ie. r= Z(“ikl and |V{||V3| = (k(n + k))?, which is maximized.

The proof of one direction is easy. Given graph G7, if GG1 has a clique of size k, then the subgraph,
which is made from the clique of size k, of G2 is obvious a highly density component G’ = (V{, V3, E’)
such that any u € V/, degree(u) > |Vj]"”‘3 L — k(n+ k)”(tl’jrk% =n+k—1, any v € VJ, degree(v) >

kE(n+k)
\Vﬂ’,:(;ﬁkl =k(n+ k:)”?']j_k% =n+k—1ie r= Z(Zﬁ—k%’ and |V ||[Vy| = (k(n + k))2.
Next we prove that [V{||V]]| = (k(n + k))? is maximized. If G has a subgraph G" =V, V', E")
such that any u € V{", degree(u) > |Vy’ Ztlik% any v € Vy', degree(v) > \Vl\g(fl]ikl Jie. = Z(tl]f;k%, and

VIV > (k(n+k))?, then [V{'] > (k(n+ k) or V'] > (k(n + k).

Without loss of generality, let |V{’| > (k(n + k)), then for any v € V', degree(v) > n+k — 1, i.e.
degree(v) > n + k. Hence, any v € V', v can only be outer vertex. Case 1: V;’ does not have any inner
vertices. Then for any v € V', degree(v) is at most n — 1. This will cause contradiction. Case 2: V" has
inner vertices. As V,’' does not have any inner vertices, any inner vertex u € V{’, degree(u) is at most 1.

Then |Vj |ktlﬁk% < 1. This will lead to V| < nf,:k) Thus |V/’| > Z(J;lfgc% (k(n +k))? > n(n + k). This

is also a contradiction. Therefore, |V{||[Vy'| < (k(n + k))2.

Now we prove the other direction. Suppose G5 has has a highly density component G’ = (V{, V3, E’)
such that any u € V{, degree(u) > |Vj Ztﬁkﬁ any v € V3, degree(v) > |V/ Z—;]j-kl) ie. r= Z&i?ﬂ%’ and
[V/||V3] = (k(n + k))?, which is maximized, we show that the original graph G has a clique of size k.

First, we claim that |V{| = |V5]| = k(n + k).

If |V{| # |V5]|, without loss of generality, let |V{| > |Vj|. Then |V{| > k(n + k) and for any v € VJ,
degree(v) > n+ k — 1, i.e. degree(v) > n + k. Hence, any v € V3, v can only be outer vertex. Case
1: V{ does not have any inner vertices. Then for any v € V;, degree(v) is at most n — 1. This will
cause contradiction. Case 2: V/ has inner vertices. As VJ does not have any inner vertices, any inner

vertex u € VY, degree(u) is at most 1. Then |V2]k+k % < 1. This will lead to |V3| < ﬁ(f;_k% Thus

[V{| > ztﬁé (k(n +k))? > n(n + k). This is also a contradiction. Therefore, |V{| = |Vy| = k(n + k).

Second, we claim that for any u; € V, if G’ includes any vertex u; that is made from u;, then G’
includes all vertices , u;1, w9, . . . s Ui(ntk) and v;1 to v;1,vi9,... s Vi(n+k)s that are made from wu;.

By claim First, we know that any vertex u in V{ or V;, degree(u) > n+ k — 1. If G’ has vertex u,
that is made from u; in V', in V{ and does not has vy, that is made from u; in V, in V4, then it is obvious
that any inner vertices, that are made form u; in V, cannot be in G’. Therefore u;; is an outer vertex
and must be connected to n+ k — 1 outer vertices in V5. This is impossible. Similarly, we can prove that
it is impossible that G’ has vertex v;;, that is made from w; in V, in VJ and does not has u;, that is
made from u; in V, in V/. The second claim is proved.

From precious two claims, we know that G’ can only be made from k vertices in V. Then to make
the degree of any outer vertex in G’ to be at least n + k — 1, any outer vertex of G’ in V;{ must connect
to all k outer vertices in Vj and any outer vertex of G’ in V4 must connect to all k outer vertices in V7.
Hence, those k vertices in V' must make a clique, i.e. the graph G has a clique of size k.

Therefore we proved that the MAXIMUM HIGHLY DENSITY BIPARTITE SUBGRAPH problem is NP-hard.

[

1.2 The greedy algorithm for the maximum highly density bipartite subgraph prob-
lem

Before we introduce the greedy algorithm, we have to introduce how to calculate the score of a subgraph
G' = (V/,V4,E"). We let the score of the subgraph be |V/||Vy| — p(|V{||V5| — | E’|), where p is the penalty
for the missing edges, i.e. to calculate the score, we subtract a penalty p for each missing edge from
H/l||V2| which is the total number of edges for the complete bipartite graph. In the project, we let
p= . We obtained many good expression modules by
these settlngs of p and T.

The basic idea of our greedy algorithm is that first, choose 3 vertices from V; to the current V; (We
will enumerate all subsets of size 3 in V}). Then repeatedly add the current best vertex u of V; into the
current V{. The best u means the score of the induces subgraph G’ = (V{U{u}, V3§, E’) is the best, where
Vg = {v|v € V5 and v connects to at least r(|V]| + 1) vertices in V] U {u}}. We stop adding new vertex
if no vertex of V; can make the current subgraph with better score. The algorithm detail is followed.

1.3 The exact algorithm for the ¢-cover hitting set problem

The WEIGHTED t-COVER HITTING SET problem is formulated as follows:

Algorithm-1 HDSubgraph(G,r)
Input: A bipartite graph G = (V1, V2, E) and a real number 7.
Output: A highly density subgraph

1. Gsub = @7 SCO’I"ebest - _17
2. for each subset S; of size 3 in V; do

3. V'remm,'n = Vl - Sl, V1” = Sl, Status =]_7

4. while Status =1 do

5. Scoretemp = —1; G;ub = (; Status = 0;

6. for each u € Viemain do

7. Vi = V{"U{u}; V3 = {v|v € V2 and v connects to at least r|V{| vertices in V{};
8. Calculate the score of induced subgraph G’ = (V{, V3, E’) and save the score to SC;
9. if SC > Scoreiemp then

10. Scoretemp = SC; Gl = G5

11. if Scorepest < Scoreiemp then

12. Gsub = Glyp; Scorepest = Scoretemp; Status = 1;

13. Assign VY of Gsup to Vi's Viemain = Vi — V{';

14. return Ggyp;

Figure 1: Greedy algorithm to find the highly density bipartite subgraph

Given a universe set X of m elements, a weight function w(z) : X — R™, a family 7 =
{S1,...,Sn} of subsets of X, and an integer ¢, find a subset H C X of minimum weight such
that every subset in 7 has at least t elements in H, where the weight of H is defined as
> zer w(z). We denote an instance of the problem by (X,7,w,t) and call H the minimum
t-cover hitting set.

Suppose H is a subset of X, we define hit;(H) = {S|S € T and |SN H| > j}, hit'(H) = (hit1(H),
hito(H), . .., hit,(H)), and weight(H) =, w(u). The algorithm is presented in Figure 2.

Before proving the correctness and time complexity of the algorithm, we give the basic idea of the
algorithm. Each subset S of X has at most ¢ + 1 coverage statuses for any partial solution H’', i.e.
S may have 0, 1, ..., t — 1, or at least ¢ element(s) in H'. Our algorithm use dynamic programming
technique, which we remember different combinations of coverage statuses of all subsets in the problem,
i.e. if hit'(Hy) = hit'(Hz), we only keep one copy of the partial solution. As the problem has n subsets
of X, the total number of different combinations of the coverage statuses is at most (¢t + 1)".

We use another trick to save the time, where we sort all n subsets of X by their sizes from minimum
to maximum, such as S}, S, ..., S),. In searching the solution, we first make sure that S| has at least ¢
elements in the partial solutions; them make sure that S} has at least ¢ elements in the partial solutions,
and so on. If there are many subsets whose sizes are bounded by d, then in the step of making Sj,
have at least ¢ elements in the partial solutions, there are at most 2% (suppose 2% < (t + 1)*) different
combinations of coverage statuses (as first k subsets are related to at most dk elements in X). After that,
since the coverage statuses of S, ..., S}, are fixed to one value, the total number of different combinations
of the coverage statuses is at most (¢ + 1)"~% < (t + 1)", where (¢ 4+ 1)"% and 29 can be much better
than (t+ 1)™.

Following two lemmas are needed in the proof the main theorem.

Lemma 1.2 Let X be a set of n elements and X = {(St, St—1,...,51)|S1 €S2 C ... C S, C X}. Then
X < (t+1)".

PROOF. (of Lemma 1.2) We prove this lemma by mathematical induction on t. When t = 1, X =
{(51)|S1 € X}. The lemma is obviously true.

Algorithm-2 Hitting-1(X,7,w,t)
Input: An instance of the WEIGHTED t-COVER HITTING SET problem (¢ > 1)
Output: A minimum weight ¢-cover hitting set

1.1 Sort 7 into {Si, Sa2,...,Sn} such that |S;| < |S;| for any i < j;
1.2 Compute X; = U;-lej, ki = | X for all 1 <i < n;
1.3 Sort X into {u1,u2,...,un} such that for any 1 < i <n,
if Uiy, € Xi_1, Uiy € X; — Xi_1, then i1 < ig;
1.4 H, = X;
1.5 Qold = {(hltt(®)7®)}7 Qnew = {(thf((B)v@)}7

2 for i =1 tom do

3 for each P = (hit'(H), H) € Qua do

4.1 P’ = (hit"(H U {u;}), H U {u;});

4.2 if hity(H U{u;}) =7 then

4.3 if weight(H,,) > weight(H U {u;}) then

4.4 H,, = HU{u;};

4.5 else

4.6 if there is no (hit'(H'), H') in Qe such that hit'(H') = hit'(H U {u;}) then
4.7 Onew = Qnew U{P'}; /* u; hits some additional subsets */

4.8 else /* u; does not hit additional subsets but may reduce the total weight */
4.9 find (hit'(H'), H') in Qpew such that hit'(H') = hit' (H U {u;});

4.10 if weight(H') > weight(H U {u;}) then

4.11 replace (hit'(H'), H') with (hit'(H'), H U {w;});

5.1 if i = k; for some 1 < j <n then

5.2 find j' which is the maximum of all j such that i = k;;

5.3 remove any P = (hit'(H), H) from Quew if S1,..., Sy ¢ hit,(H);

5.4 Qold - Qnew;
6 return H,,;

Figure 2: Algorithm for solving the WEIGHTED #-COVER HITTING SET problem.

Suppose when ¢ = i, the lemma is true, i.e. [{(S;,Si—1,...,51)[S1 €S2 C...C S, C X} <(E+1)™
Then when t = ¢ + 1, we have

X = {(Sit1,86,...,51)[S1 €S C...5 C Sip1 C X}
= Z |{(Si’5i*1>'--,51)‘51 CS C...CS;C S’L’+1}‘
Si+1CX
. n
= Z (|S,+1|>|{(Si,...,51)|51QSQQ...SigSiHH
[Siy1]=0 v
= Z <|Sn ’) (1 + 1)\Si+1\ /* by induction assumption */
[Si+1]=0 i+1

((i+1)+1)"

Hence, when ¢t = ¢ + 1, the lemma is still true. Thus we proved the lemma.]

Lemma 1.3 Let Hy, Hy, H' be three subsets of X such that HH "N H = 0 and Ho N H' = 0. If
hit'(Hy) = hit'(Hs), then hit'(Hy U H') = hit'(Hy U H').

PROOF. (of Lemma 1.3) As hit'(Hy) = hit'(Hs), hit;(Hy) = hit;(Hs) for all 1 < i < t. Hence for any

hit;(H; UH/)
= {S|SeT and |SN(H,UH)| >}
= {S|SeTand |[SNH{|+|SNH|>i} /* because Hi N H' =0 */
Ed
- U ({5|5€ T and [SNHy| > i~ j}(|{(S|S €T and [SNH| :j})
j=0
Ed
- U (hiti_j(Hl) (SIS €T and |SNH'| = j})
§=0
||
- U (mti_j(Hz) (SIS € T and |S 1 H'| = j})
j=0
|
- U ({S|SE T and [SNHy| > i~ j}(J{(S|S €T and [S N H| :j})
j=0
= {S|S €T and |SN Hy|+|SNH' >i}
{S|S €T and |SN (HyU H')| >} /* because Ho N H' =0 */
hiti(HQUH,).

Therefore, hit'(H; U H') = hit'(Hy U H') and the lemma is proved. O

Theorem 1.4 The WEIGHTED t-COVER HITTING SET problem can be solved in O((t 4+ 1)"mnt) time and
in O((t+1)"nt) space, where m is the size of the ground set and n is the number of subsets for the given

instance. If furthermore the problem has at least m subsets whose sizes are upper bounded by d,

then the problem can be solved in O(((t+ 1)% @082+ mnt) time and in O(((t 4 1)¥/ (dHlog2(tH1))ynpy)
space.

PrROOF. We first prove the correctness of the algorithm.

Given an instance (X, 7, w, t) of the WEIGHTED ¢-COVER HITTING SET problem, let X = {uy,ua,...,un},
where X is sorted as shown in Algorithm-1 such that the order of elements in X is as 51, 52— X1,..., S, —
X1, where X; = Ug:ISi. Let H! = {wi,, Wiy, ..., ui, }, whose elements are in the same order as in the
sorted X (i.e. if j; < jo with respect to the index of HY, then ij, < i, with respect to the index of X),
be the minimum ¢-cover hitting set. Let Hf = {Wiy, Wiy, -, u; } forall T <5 < £

To prove correctness, we claim that when the for loop in step 2 of Algorithm-1 is at loop ¢ = i;
for all 1 < j < ¢ (note that u;, is the jth element in H ¢ and ijth element in X'), immediately before step
5.4 is executed, there exists a P = (hit'(H), H) in Qe such that hit!(H) = hz’tt(Hf) and weight(H) =
weight(H f) We prove this claim by mathematical induction on j.

Induction basis. In the case of j = 1 (i.e. i = i1), first we prove that the program will generate
the element we need. Since (hit!(0),0) is in Qua, (hit'({ui,}), {ui,}) = (hit'(H{), H{) will be obtained
in step 4.1.

Then we prove that the element we need will be added into Quew. If no (hit'(H),H) in Quew
such that hit!(H) = hit'(HY), then (hit'(HY), H{) is added into Que, in step 4.7. If there exists a
(hit'(H'), H') in Queyw such that hit!(H') = hit'(HY), it is obvious that weight(H') > weight(HY}).
Otherwise H' U {ui,, U, . .., u;,} would be a t-cover hitting set with weight that is less than the weight
of {wi, iy, ..., u;,} =H ¢, which causes contradiction that H* is the minimum ¢-cover hitting set (note:

here we use the lemma 1.3 and the fact that H' N {u;y, iy, ..., ui, } = 0 and HY N {ugy, iy, - - - ui,} = 0).
If weight(H') > weight(HY), then H' is replaced by H{ in step 4.11.

Finally we prove that the element we need will not be removed in step 5.3. If i = i; = k; for some
1 < j <mn,let j/ be the maximum among all those j such that ¢ = k;, then ¢ can only be 1. Because if
t > 1, note that X = U?lzlSj and X N {wiy, Uiy, . .., us,} = 0, all Sj for j < j" is only covered by one
element in HY, then H* cannot be the minimum ¢-cover hitting set of the problem. If ¢ = 1, it is obvious
that S;, for all 1 < j < j/, must have one element in Hf, i.e. {Si,... ,Sir} C hit,(H{). Hence for any
P = (hit'(H), H) € Quew such that hitt(H) = hit'(HY{), P will not be removed in step 5.3.

From above three steps, we proved that there must be a (hit!(H), H) in Qpey such that hit!(H) =
hit!(H{) and weight(H) = weight(HY). Therefore, in the case of j = 1, the claim is true.

Induction step. Suppose that when j < ¢ < £ the claim is true, i.e. there exists a P = (hit'(H), H)
in Qe such that hit'(H) = hitt(Hf) and weight(H) = weight(Hf). Now we prove that when j = ¢, the
claim is also true. By induction hypotheses, when j = ¢—1, there exists a P = (hit'(H), H) in Qe such
that hit'(H) = hit'(H}_,) and weight(H) = weight(H}_,). In step 5.4 of the last 100p, Qpeq is assigned
to Quq. Hence, when j = ¢, there exists a P = (hit'(H), H) in Q4 such that hit'(H) = hit(Hg 1) and

weight(H) = wez’ght(Hﬁfl). Similar to the proof of case j = 1, we still use three steps to prove the claim
in the case of j = q.

First we prove the the program will generate the element we need. As u;, is not in H (note that any
element in X is visited only once and w;, is not used before), where hit'(H) = hit(Hg_l), by Lemma 1.3,
hit!(H U {u, }) = hitt(Hg_l U{u,}) = hz’t(Hﬁ). Hence a P = (hit'(H U {u;,}), H U {u;,}), where
hit'(H U {us, }) = hit(HY) and weight(H U {us, }) = weight(H}), will be generated in step 4.1.

Then we prove that the new element we need will be added into Qpey. If no (hit'(H'), H') in Qpew
such that hit'(H') = hit(H U {u;,}), then (hit'(H U {u;,}), {H U {u;,}}) is added into Qe in step
4.7. If there exists a (hit'(H'),H') in Qpew such that hit'(H') = hit'(H U {u;,}), it is obvious that
weight(H') > weight(H U {u;,}). Otherwise H' U {u;_,,,...,u;} would be a t-cover hitting set with
weight that is less than the weight of {w;,, uiy, ..., u;,} = H*, which causes contradiction that H is the
minimum t-cover hitting set. If weight(H') > weight(H U {u;, }), then H' is replaced by H U {u;,} in
step 4.11.

Finally we prove that the element we need will not be removed in step 5.3. If i = i, = k; for some j,
let 5" be the maximum among all j such that i = k; for 1 < j < n, thenall Sy,...,S; must be in hitt(Hg),
otherwise H* would not be a t-cover hitting set for the given instance (note that H* — qu does not have
any element in S for 1 < j < j'). Hence, for any P = (hit'(H), H) such that hit'(H) = hit'(H}), P will
not be removed from Q. in step 5.3.

From above three steps, we proved that there must be a (hit(H), H) in Qe such that hit!(H) =
hitt(Hg) and weight(H) = wez’ght(Hﬁ). Therefore, in the case of j = ¢, the claim is also true.

Therefore, when j = £, we will find a (hit(H), H) in Qyey such that hit'(H) = hit'(Hf) = hit'(H")
and weight(H) = weight(H"), i.e. we will find the minimum ¢-cover hitting set.

Having proved the correctness of the algorithm, let us now consider the time complexity and space
complexity of the algorithm. Step 2 loops |X| = m times. Step 3 loops |Quq| times. By Lemma 1.2,
|Qoa| < (t+ 1) (note that hit'(H) = (hity(H), hito(H), ..., hit,(H)) and hit,(H) C ... C hito(H) C
hiti(H) C T). Steps 4.1 to 4.4 take O(nt) time. Steps 4.6 to 4.11 can be finished in O(logy(t + 1)") =
O(nlogy(t + 1)) time if we use AVL tree to implement Q. and Q4. Hence the total time complexity
is O((t + 1)"mnt).

In the case that 7 has at least subsets whose sizes are bounded from above by d, then

n
T+d/ Tog, (t+1))
n 1
both Quq and Qpew have at most 21+d/los2(t+1) = ((¢ 4 1) IHlos2(E+1)/d)™ elements.
,any P = (hit'(H), H) in Quq or in Qpew, hit;(H), where 1 <i < t,

- dn
when ¢ = T d/ Tog, (L41)?

Furthermore, when ¢ =
has S1,959,...,5

dn
14d/ logy (t+1)

Hence, when 7 > all elements in Q.4 or in Q,¢, have at

dn
TFd/ Toga (t+1) 1+d/logs (t+1)

most (t + 1)n_Wg2<t+1) combinations of hit'(H), i.e. the size of Qg or Qpew is always bounded
from above by (¢t + l)n_m = ((t+ l)m)". Therefore, the total time complexity is
O(((t + 1) o878 g,
The space complexity is O(]Quq|-(lengthes of elements in Qyq)) = O(|Qnew|):(lengthes of elements in Qper)).
The lengthes of elements in both Q.4 and Qe are bounded from above by O(nt). Therefore, in the

general case, the space complexity is O((t+1)"nt) and in the case sizes of many subsets in 7 are bounded
from above by d, the space complexity is O(((t + 1)%/(dHoga(t+1)ynp), O

